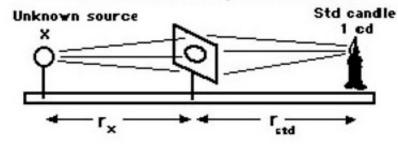
Photometry 3/8/05 8:21 PM

Lab 26, Photometry

** Please Bring two different candles for this Lab **

Set up the Photometry Apparatus as shown:

$$E = \frac{1}{r^2}$$


$$E = Illumination in Lumens$$

$$I = Intensity in cd (candela)$$

$$r = distance in meters$$

PHOTOMETRY:

The Bunson Grease Spot Photometer

Adjust to Equal Illumination

So
$$E_x = E_{std}$$
 $\frac{I_x}{r_x^2} = \frac{I_{std}}{r_{std}^2}$
Solve for I_x

Adjust he apparatus such that both sides of the screen are equally illuminated.

The illumination of the sample will equal the illumination of the standard candle which is 1 cd.

Please make your measurements and fill in the data table.

Show your method of calculations on page 2.

Photometry 3/8/05 8:21 PM

DATA TABLE

Sample Number	Unknown Light Source	$\mathbf{I}_{\mathbf{X}}$	r _{std} to screen	$(r_x)^2$	$(r_{std})^2$	$I_{\mathbf{x}}$
1	Normal Candle					•
2	Two Candles					•
3	Three Candles					•
4	Wimpy Candle					•
5	Gas Light			-		•

Calculations:

.

.

.

Critique: